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11.1 Introduction

Under certain conditions many solids can be obtained in a partially or
completely disordered form. We are interested here in the inelastic deforma-
tion and fracture of such solids in the range of temperature in which their
structure does not change substantially, i.e., below their glass transition tem-
perature. While such solids have often been referred to as amorphous which
implies the complete absence of structural regularity, we will prefer to call
them glassy to accommodate possibilities of some short range or intermedi-
ate range order which is often found to be present. It must be emphasized,
however, that our principal assignment will not be the description of the
atomic or molecular structure of these solids beyond a certain level that is
necessary to understand the mechanisms of deformation. Extensive descrip-
tion of the structure of glasses and the experimental tools available for their
measurement can be found in Volume 9 of this series of treatises.

The subject of inelastic deformation of solids is a broad one that can not
be treated adequately in its entirety in a single chapter. Therefore, here
we will concentrate primarily on a discussion of the mechanisms of such
deformation in nearly homogeneous solids, to large inelastic strains, under
the simplest non-trivial states of stress, emphasizing the physics rather than
the operational mechanics aspects of the deformation. Heterogeneities, are
often important in modulating the deformation process such as in the case
of partially crystalline structures where the crystallites do not undergo much
deformation. They are also of great importance in fracture where they act
as principal sources not only for fracture initiation but also for toughening
of some brittle polymers. These topics will, however, not be developed in
this chapter.

While we will pay attention to the important structural differences in the
deformation mechanisms between atomic glasses (metallic glasses), network
glasses (oxide glasses) and polymeric glasses that govern the local kinematics
of the deformation process, we will emphasize as much as possible the com-
mon unifying features. We will concentrate our attention only on monotonic
deformation and fracture rather than on the cyclic variety which has many
important differences requiring extensive additional developments. Readers
interested in cyclic response of engineering solids in general and also many
glasses in particular are referred to Suresh (1991).

Apart from the neceszity to understand the special stress and strain con-
ditions of the crack tip environment in the development of the fracture mecl.
anisms we will not discuss in any detail the mechanics aspects of fracture.




An elegant and crisp treatment of this subject has been given by Hutchinson
(1979) to which the reader is referred.

11.2 Structure of Glasses
11.2.1 Glass Formation

Formation of glasses upon cooling from the melt relies principally on the
necessity to suppress nucleation of a crystaliine phase. That the nucleation
and growth of crystallites from a melt, in the absence of heterogeneities, re-
quires substantial undercooling and that the accompanying sharply reduced
kinetics of diffusion or ordering makes the establishment of a crystalline phase
even more difficult is common knowledge. The specific conditions required to
override crystallization to form a glass in different materials, alloys, or mix-
tures, such as special features in the phase equilibrium diagrams, the nature
of diffusion or ordering in the meit, molecular topological constraints, etc.
have been widely discussed in the literature for specific glasses and will not
be developed here. More extensive coverage of this subject can be found in
Volumes 9 and 12 of these treatises for all types of glasses including atomic
glasses, network glasses and chain polymeric glasses.

11.2.2 Atomic Structure of Glasses
11.2.2.1 Relation of Structure to Deformation Mechanisms

The mechanisms of inelastic deformation by motion of dislocations, trans-
port of point defects, or by twinning or martensitic shear transformations in
crystalline solids are well understood because of the clear connection be-
tween the regular crystal structure and the relatively simple kinematics of
the atomic motions that are involved. In comparison with this the detailed
understanding of the mechanisms of inelastic deformation in glasses and the
specific kinematics of atom motions that are involved are far less clear, This
is a direct result of the difficulty of accurately describing the structure of
glasses, and those regions in them that are most favorably endowed for the
local atomic motions that produce inelastic strain. Most, if not all, exper-
imental probes of the structure of glasses only provide information on the
volume averaged features of the structure which can not uniquely distinguish




between different forms of aggregation of atoms associated with variations
of local packing, some forms of short range order, and even more impor-
tantly, between different forms of relative spatial correlation of the extreme
portions of the spectrum of structural disorder (Ziman, 1979; Gaskell, 1983).
While these spatial variations of disorder and their correlation has often ljt-
tle influence on the overall volume averaged physical properties, they are
of overwhelming importance for the understanding of inelastic deformation
(and parenthetically, also of diffusion). It is for this reason that computer
simulations of the structure and the associated mechanisms of inelastic de-
formation of glasses of all types have been very informative as we will discuss
below.

11.2.2.2 Radial Distribution Functions

A characteristic form of structural information obtained from x-ray or
neutron diffraction experiments is the radical distribution function (RDF) of
atom positions around a typical atomic site (see Ziman, 1979). Such RDF’s
provide useful information on the distribution of volume averaged coordina-
tion of atoms in the glassy state, and give a useful visual diagnostic means
of gauging the average degree of disorder from the shapes of these functions.
The RDF’s, however, are not a sensitive indicator of the local correlations
of disordered material of different description. Thus, their utility in under-
standing inelastic deformation is limited. They serve, nevertheless, as a con-
venient bridge in connecting results of structural simulations to experimental
information, where the information provided by the simulation furnishes a
degree of specificity often not reflected in the experimental results.

11.2.2.3 Distributions of Atomic Packing or Interstitial Sites

Bernal (1964) has pioneered the analysis of dense random packed ball
bearing spheres as analogs for the structure of simple liquids, and by exten-
sion, that of atomic glasses, demonstrating that the disordered structure of
such assemblages of hard spheres can be described by a certain distribution of
five different polyhedral figures which characterize interstitial space in these
assemblages. The exercise was repeated computationally by others. Frost
(1983) has determined that characterization of the disordered space made up
from dense random packing of spheres by means of polyhedral figures hav-
ing atom sites at their apexes requires more than the five canonical figures
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identified by Bernal. He proceeded further and also furnished distributions
of sphere sizes that can just fit into interstitial holes. This latter information
is of interest in understanding sorption and diffusion of gases.

An alternative representation of tesselation of space is by Voronos polyhe-
dra constructed around a.oms rather than interstitial sites. This was studied
first by Finney (1970a) and subsequently by others. It provides information
on the distribution of the volume per atom. Figure 11.1 gives such a dis-
tribution of volume per atom in a dense random packing of hard spheres in
units of the average atomic volume in the glass. The distribution shows that
while the average volume per atom is only about 9% larger than that in the
reference crystal there is a considerable tail of larger volumes, which as we
will see play an important role in inelastic deformation. Simulations using
actual interatomic interaction potentials rather than hard spheres have given
very similar results (Finney, 1970b).

nuinbier of celle

g

095 1000 .4 . v 182
reduced volume JV'*

Figure 1: Figure 11.1: Distribution of volume per atom in an atomic packing model
(Finney, 1970a).

While the atomic packing studies in 3-D should be clearly preferred to
compare with experimentally obtained diffraction information, the visual-
ization of such packing, and the forms of its alteration upon deformation is
often difficult to achieve. For this reason several 2-D models have aiso been
studied in considerable detail. One of these is a disordered variant of the well
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known Bragg bubble model making use of the capillary inter-bubble forces
acting between small soap bubbles floating on the surface of water (Argon
and Kuo, 1979). The behavior of such rafis upon deformatioa in the plane of
the raft have given considerable insight into the nature of plastic flow (Argon
and Shi, 1982).

11.2.2.4 Free Volume:

That excess atomic volume concentrated into local regions in a disordered
solid may permit relatively easy rearrangements there has been recognized
for a long time and has been associated with the notion of free volume. While
the notion is often loosely used to advance qualitative arguments, it can be
made more precise into a structure characterizing parameter in the computer
simulation models. There it has been defined as (Deng et al, 1989b)

n
== 2 (0% = ) (11.1)

n =]
where (1, is the average excess volume per atom in a cluster of n atoms,
over the population average volume {1y per atom. Theoretical considerations
(Cohen and Grest, 1979) and computer simulations (Deng et al, 1989a,b)
have indicated that regions in which such excess volume clusters, i.e., where
free volume aggregates, show a reduced level of local elastic stiffness or re-
duced cohesion, and have so-called liquid-like behavior. Topological evidence
suggests that in the melt, and even in the sub-cooled melt regime, above the
glass transition temperature (T,), overall compliant behavior results from
the percolation of liquid-like material through the structure. Below T, this
percolation is broken and the material exhibits overall stiff behavior as now
the relatively more densely packed stiff material becomes contiguously con-
nected (Deng et al, 1989a,b). In Section 11.4.2 we will furnish evidence that
the liquid-like material that is spatially isolated below T, nevertheless consti-
tutes the fertile material in which plastic rearrangements preferentially occur

{Deng et al, 1989d).

11.2.2.5 Packing of Atoms in Network Glasses and Chain Polymeric
Solids

The structures obtained from dense random packed spheres are of great
value in elucidating complex topological concepts, and also serve as idealized

12



models of the structure of glassy metals where the idealization has merit.
In space network glasses such as fused SiO; and its many modifications, as
well as in chain polymeric glasses the structures must be simulated by the
use of the appropriate interatomic force fields between bonded atoms as well
as non-bonded atoms. Such simulations have also been performed for many
systems. The results of these simulations are best discussed in the context
of the deformation studies for which they have been developed. Therefore,
we postpone their introduction to Sections 11.5 and 11.6

11.2.2.8 Atomic Site Stress Tensor

The glassy state has been associated with excess enthalpy which has been
useful in understanding calorimetric measures of structural relaxation. Such
average scalar measures of the excess properties of the glass, however, do not
convey much information on where the local excess properties congregate,
or more importantly, where and how the mechanical response occurs. For
such purposes, Egami and Vitek (1983) have emphasized the utility of the
atomic site stress tensor defined much earlier by Born and Huang (1954) on
the local application of the virtual work principal at each atomic site based
on the level of equilibrated forces acting on individual atoms. For atomic
solids, where substantially only central forces act between atoms, the atomic
site stress tensor is defined as

N 1 3d(r)} rf;rg.
0’aﬁ(‘)"“2n‘§[ - Lw = (11.2)

where ® is the interatomic pair potential from which all interatomic forces
are calculated, r; is the magnitude of the radius vector connecting atoms
i and j,r{; and rf, are the magnitudes of the a and 3 components of the
radius vector connecting atoms s and j and f); is the volume of the central
atom i for which the tensor component is defined. The sum is over all
§ neighbors with which atom ¢ is effectively interacting. Egami and Vitek
have calculated the distribution of the two scalar invariants of the atomic site
stress tensors: i.e., the mean normal stress o (negative pressure) and the
deviatoric (Mises) shear stress for a specific simulation. Their results, given
in Figs. 11.2(a) and 1i.2(b) show that the rms value of the mean normal
stress is 6% of the bulk modulus, while that for the deviatoric shear stress
is fully 18% of the shear modulus. These magnitudes border on the cohesive
resistances of the solid and are very substantial. Egami and Vitek (1983)
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have proceeded further and have demonstrated that it is possible to account

for the excess enthalpy of the glassy state by considering the elastic strain
energies associated with the atomic site stresses in the glass - in reference to

those in the ordered crystailine phase of the material. We will demonstrate
in Sections 11.4.2 and 11.6.3 the general utility of the atomic site stress

tensor in the computational simulations of plastr' resistance in metallic and
polymeric glasses respectively.

N (p)

p (Gpa) T(GPa)

Figure 2: Figure 11.2: Distribution of atomic site stresses: (a) negative pressure;
(b) deviatoric shear stress (Egami and Vitek, 1983).

11.2.2.7 Other Tcpological Characterizations of the Glassy State

In addition to the forms of structural characterization described above
there have been many attempts in the nature of abstract topological trans-
formations to find a unique connection between a characteristic disordered
state of the glass and a reference ordered state. While many of these studies
stand out as ingenious, they have so far failed to provide much help in better
understanding of local inelastic rearrangements. The interested reader will
find a good selection of these models presented by Vitek (1983).
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11.3 Qze;_v_@ew of Phenomenology, Mechanics and Mechanisms of
Inelastic Deformation and Fracture of Glasses

11.3.1 Phenomenological Conditions for Inelastic Deformation

Inelastic deformation in solids is a rate process which, in the limit of very
low temperatures, requires for its initiation a critical deviatoric shear stress
to overcome a threshold shear resistance # which for a given state of the
solid, is a material property. Thus as T — 0, plasticity is initiated when

s = (%73i/2)% = 7(om) (11.3)
where s;; = 0i; — 0m are the so-called deviatoric stresses, o, = 0;;/3 is the
mean normal stress, and repeated indices imply summation over all indices
i = 1,2,3 etc. Equation (11.3) indicates that the threshold plastic resistance
# may depend on o,,. Under these conditions the plastic strain rate ¥ is
arbitrarily high. At higher temperatures, but still well below T, where the
structure does not undergo significant relaxation during the time of defor-
mation, the plastic strain rate should be given by (Kocks et al, 1975).

AG*(s/7)
kT )

where the stress dependence of the activation free energy AG® of the defor-
mation process can be often expressed phenoraenoiogicaily as

4 = Ygexp(— (11.4)

AG" = AGo(1 - (%)P)q. (11.3)

where p and g are exponents close to unity.

The pre-exponential factor of the rate expression 4 combines a fun-
damental frequency factor Li» of the deformation producing unit, the local
plastic transformation strain increment ~T and the volume fraction ¢ of de-
formation units, i.e.,

= ey vg. (11.6)
The mechanism inspired form of the strain rate expression given in Eqn
(11.4) can often be phenomenologically restated as a power-law form
.
1= 01z)" (11.7)

where both 4, and m are fitting constants. Equation (11.7), albeit more
approximate, incorporates a reverse deformation component that is left out
in Eqn (11.4), which permits the strain rate goes to zero when s — 0, at least
formally. More specific forms of these expressions will be discussed below.
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In many mechanistic models only an applied shear stress o is considered, so
that s — 0.

11.3.2 Kinematics of Inelastic Strain

11.3.2.1 Distortional Plasticity

There has been much controversy associated with the mechanism respon-
sible for plastic strain production and its kinematics in glassy solids. Since
a number of glassy metals and polymers exhibit strong shear localization, it
was proposed first by Gilman (1968), and then by many others, that plastic
deformation in these solids is produced by generalized dislocations having
similar mobility characteristics as those in metal crystals. While there is
considerable merit in considering dislocations for operational purposes of lo-
cal stress analysis or accounting for the macroscopic strains, there is no firm
evidence that there is any analogous mobile defect in a glassy solid resem-
bling a crystal dislocation (Argon, 1981). Instead, much evidence basea on
computer simulations indicates that shear is produced in glassy solids by
means of individual shear transformations occurring in small atom clusters
which do not propagate in a contiguous manner outward from the initial
cluster. Thus, mechanistically the rate process of plastic deformation ap-
pears to be nucleation controlled rather than controlled by the mobility of
the boundaries of the transformation.

If such shear transformations can be considered to have shapes of oblate
spheroids with principal axes characterized by unit normal sectors d and 7
in the plane and out of the plane of the transformation shear increment 47,
as shown in Fig. 11.3, the resulting macroscopic plastic strain increment §¢;;
is

Sei; = 5(cv) e, (11.8)
1
a; = -2-(d.-n,- -~ d,n.) (11.86)

In Eqn (11.8) ay; are elements of a geometrical (Schmid) shear strain resolu-
tion tensor relating the local shear strain increment in the spheroid coordi-
nates to the external shape coordinates, and ¢ is the volume fraction of the
local material undergoing the transformation. Since the structure of a glass
tends to be isotropic down to rather small volume elements, the shapes of the
local shear transformations can be expected to be relatively equiaxed, with

16




Figure 3: Figure 11.3: Principal directions of ellipsoidal shear transformation: 1 is
unit nornial vector of invariant plane, d is parallel to shear direction.

the directions of the local shear axes coinciding with those of the macroscopic
body. Thus, giving

by = §(eT). (11.86)

For a longer-term average point of view that considers the formation of the
transformations as “instantaneous”, where 4T must be considered as a prop-
erty of the structure, then

6(cy") = 4T be. (11.8¢)

Equations {11.8 a-c) are in incremental form. They can be extended into
rate form when they transform into

, d
& = a7 (er") = e o R (11.9a)

4 =¢,7"R, (11.96)

where ¢, is now a steady state volume fraction of fertile material available to
transform, and that the rate of transformation is governed by a stress and
temperature dependent exponential Arrhenius rate constant R suck as that
appearing in Eqn. (11.4), i.e.,

AG*(s/F)
kT

The form of the expressions (11.9 a-c) implies that a kinematical steady state
exists among volume elements so that the transformable (fertile) fraction of

R = vg exp(~ ). (11.9¢)
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material is never exhausted.

11.3.2.2 Dilatational Plasticity

Under certain conditions the plastically deforming solid can undergo sta-
ble cavitation homogeneously or in planar zones. This produces additional
strain of a dilatational nature. A prominent example of this is the crazing
phenomenon in certain flexible chain glassy polymers where a primordial slab
of polymer becomes fibrillar or spongy, normzl to the principal tensile stress
as shown in Fig. 11.4. This effectively results in a dilatational transforma-
tion associated with a tensile transformation strain €7 in the primordial slab.
The overall tensile strain increment then, in the direction of the tensile stress
is

be = b(ce’) = b, (11.10)
X heT
e >
craze

Figure 4: Figure 11.4: Craze as a dilatational transformation.
where é¢ is the increment in the volume fraction of the initial primordial
material undergoing the crazing expansion. Since inside the craze there are

no associated other transverse strains, the uniaxial strain of Eqn. (11.10) is
also the net dilatation increment 66, in the body, i.e.,

50 = be. (11.11)

18




11.3.3 Plasticity vs Brittle Behavior

Because plastic flow in glassy solids is primarily initiation controlled, it
occurs at relatively high stresses in relation to the cohesive properties of
the solid. Therefore, fracture is usually a close competitor to plastic flow
- particularly when it occurs in a tensile field. The choice in the termi-
nal mechanical behavior of solids in tension, between inherent brittleness
and inherent plasticity rests with the nature of the atomic bond. In two
complementary fundamental developments Kelly et al (1967) and Rice and
Thomson (1974) have stated that this bifurcation in behavior is governed in
the limit at the tip of an atomically sharp crack. These. concentrated tensile
stresses ahead of the crack probe the ideal cohesive strergth of the solid while
the maximum concentrated shear stresses on some inclined planes probe the
ideal shear strength. Upon stressing the cracked solid, brittle vs ductile be-
havior is governed by whether or not the conditions of decohesion in the
plane of the crack are reached before the conditions of ideal shear. In the
covalently bonded network glasses the balance appears to be tilted clearly in
the direction of brittleness in tension while for metallic and polymaeric glasses
the tilt is toward plastic behavior, for these glasses in the unaged form (Ar-
gon, 1982). As we will discuss somewhat more extensively in Section 11.7.1
the bifurcation in the behavior of metallic and polymeric glasses, however,
depends strongly on the state of structural aging in these materials which
produces changes in plastic resistance. Here it should suffice to state that
plastic response in a glass is always attainable in principle, but may in spe-
cific instances require suppression of fracture by superposition of a pressure
to inactivate cracks or faws.

11.3.4 Mechanisms of Fracture in Glasses

As in other solids, in one limit, fracture in glasses could be a process of
brittle separation with no, or negligible accompanying plastic flow. Oxide
glasses and many structurally aged glassy metals fracture in this mode re-
sponding locally to a critical decchesion criterion at the tip of a propagating
crack that can be characterized by a critical Mode I stress in.ensity criterion.

In unaged metallic glasses and in most stiff chain glassy thermoplastic
or thermnosetting polymers fracture is a process of ductile separation. Here
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the actual separation occurs in two stages. First the continuous solid is
rendered discontinuous by cavity formation at heterogeneities, followed by
plastic expansion of these cavities to complete local ligament rupture as
illustrated in Fig. 11.5, in a manner closely resembling the ductile fracture
process in crystalline metals.

\\eeas

Figure 5: Figure 11.5: Formation and growth of ductile fracture cavities.

x¥Y

Figure 6: Figure 11.6: Sketch of break-up intc fingers of ductile erack tip acting as
a non-linear fluid meniscus.

Many ductiie metallic glasses, free of heterogeneities, however, fracture
by a variant of a fluid flow instability where the plastically blunted crack tip
acts as a fluid meniscus advancing under the deformation induced negative
pressure gradient zone of the blunted crack tip. The concave meniscus-like
flow field becomes unstable to flow perturbations of a certain wave length
which first penetrate into the crack tip zone in the from of tubular fingers
followed by rupture of the ridges separating these tubular zones of penetra-
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tion as sketched out in Fig. 11.6. The separation advances with the crack
tip in a self-similar form of steady ductile separation.

Figure 7: Figure 11.7: A sequence of fracture of a craze: (a) an advance cavitation
event from a dust particle ahead of the main crack in a craze at point P(b,c) the

fracture spreading from the advance cavitation site joins the main crack (Doyle et
al., 1972).

In flexible chain thermoplastic glassy polymers the fracture process is
preceded by crazing where crazes that spread through the polymer undergo
internal break-up due to intrinsic non-uniformities in the fibrillar or spongy
craze matter. More often, however, crazes begin to fail from the interface of
a particulate heterogeneity that the growing or widening craze acquires as
shown in the sequences of states in Figs. 11.7(a)-11.7(c). Since crazes act
both as ingredients promoting dilatational plasticity and also as the promi-

nent sites of fracture, they can become an important means of controlling
toughness in such glassy polymers.
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Figure 8: Figure 11.8: Sketch depicting development of shear distortion by the
accumulation of isolated shear transformations under stress (Argon and Shi, 1982).

11.4 Inelastic Response in Metallic Glasses
11.4.1 Experimental Observations

11.4.1.1 Anelasticity

The distributed nature of atomic <. order in a metallic glass permit dif-
ferent volume elements to undergo shear relaxation under an applied stress
with different ease. This can be characterized by assigning different volume
elements different terminal plastic shear resistances 7 or, in an associated
manner, consider them to have different activation barriers to shear trans-
formation under a stress ¢ « 7. This difference can be probed best, and
in the least invasive manner, by internal friction experiments. (Berry, 1978;
Morito and Egami, 1984; Deng and Argon, 1986a) or by anelastic creep and
creep recovery experiments (Berry, 1978; Argon and Kuo, 1980). Figure 11.8
gives a schematic representation of the response of the solid by anelastic creep
where the application of a stress ¢ mechanically polarizes the structure by
permitting the accumulation of shear relaxations that can occur at a given
temperature during the period under stress. Increasing the time of observa-
tion, or increasing the temperature, increases the total strain by permitting
more of the more difficult transformations to occur. In an internal friction
experiment such transformations occur in the forward and reverse manner
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Figure 9: Figure 11.9: Change of internal friction with temperature and its depen-
dence on aging below T, in a Cugsg Zry; alloy (Deng and Argon, 1986a).

and the associated hysteresis produces energy dissipation. Figure 11.9 gives
a typical internal friction spectrum of the cyclic loss (tan é) in torsional os-
cillations in a Cugg Zry; glass at different levels of aging (Deng and Argon,
1986a) while Fig. 11.10 shows the typical linear, reversible anelastic creep re-
sponse of a PdgoSizo glass at 176 C (Berry, 1978). Argon and Kuo (1980}, and
Deng and Argon (1986b) have demonstrated how the distribution of critical
activation barriers to the local stress relaxations can be obtained from the
analysis of the anelastic creep and the internal friction experiments. Figures
11.11(a) and 11.11(b) give the distributions of activation energies for trans-
formations in PdggSiso and CuggZr,;, deconvoluted from anelastic creep and
recovery creep experiments, and from internal friction experiments, respec-
tively. Figures 11.9 and 11.11(b) show that the internal friction experiment
that produces nearly no permanent change in the structure during the mea-
surement is a very sensitive method for the study of structural relaxations.
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Figure 10: Figure 11.10: Linear anelastic creep and creep recovery in a PdggSizo
glass at 176 C (Berry, 1978).

11.4.1.2 Viscous Flow

When creep experiments at low stress levels (0 <« 7) are continued at
higher temperatures and for longer periods of time, it is thought that the
accumulating shear transformations, as sketched out in Fig. 11.8, begin to
progressively fill the volume and form contiguously transformed region, per-
colating through the structure (Argon and Shi, 1983). This should destroy
memory of the initial unstrained structure and result in a monotonically in-
creasing component of irrecoverable viscous strain. Taub and Spaepen (1979,
1980) have used viscous flow experiments as a probe to determine the effects
of structural relaxations in a PdygSiy glass. The temperature dependence
of the viscosity of such a glass after a series of aging treatments at different
temperatures is shown in Fig. 11.12. The remarkable finding is that the acti-
vation energy for the flow is unaltered by the different aging treatments but
that the viscosity is systematically and dramatically increased with increas-
ing aging temperature or increasing structural ccmpaction. Since viscous
flow is always controlled by the highest activation energies of the spectrum,
i.e., the most difficult to deform component, and since the internal friction
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studies show-that structural relaxation primarily alters the lower end of the
spectrum as shown in Fig. 11.8, these results are not unexpected. The
dramatic increase in the viscosity, however, indicates also a key interdepen-
dence between different parts of the activation energy spectrum of shearing
sites. The elimination of low energy sites with large free volume does not
only reduce the anelastic response of the glass, but it also removes the “trig-
gering” mechanism that permits the shear relaxation in the viscous flow of
the high energy component of the spectrum. This suggests that the main
effect of structural relaxation is the progressive removal of the more read-
ily rearrangeable component of material having large free volume. This can
be formally considered as a change occurring in a factor p(f2,) in the pre-

exponential factor 4¢ of the principal strain rate expression, as defined by
Eqn. (11.4), where
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Figure 11: Figure 11.11: Distribution of activation energies for anelastic response:
(a} PdaoSizo (Argon and Kuo, 1980); (b) Cusy Zry; (Deng and Argon, 1986a).

p(f1;) = exp(—afl;; o) (11.12)

represents the probability of finding a local region with free volume in excess
of 1, (Argon, 1985). The computer simulations of inelastic relaxations in

model glassy solids, discussed in Section 11.4.2 below are in support of this
interpretation.
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Figure 12: Figure 11.12: Dependence of shear viscosity of Pdg2Siys on temperature
for different aging treatments (Taub and Spaepen, 1980).

11.4.1.3 Plastic Flow

As the applied shear stress ¢ becomes closer to the mecharical threshold
resistance 7 the inelastic strain rate increases non-linearly with stress and
tends to become asymptotically unbounded as ¢ — 7. Alternatively upon
the imposition of a relatively high strain rate of the level usually applied by
laboratory testing machines, a state of plastic flow with negligible hardening
behavior is reached after a more or less stretched out elastic-to-plastic tran-
sition as is shown in Fig. 11.15 for the case of a PdgSizo sample strained in
tension (Megusar et al., 1979).

Plastic flow in metallic glasses has a number of features that are char-
acteristic of plastic flow in crystalline metals. First, the temperature de-
pendence of the plastic resistance is relatively small in the low temperature
region, as shown for the typical case of PdsoSizo and Pds75Cus Siies in Fig.
11.14. Second, the strain rate sensitivity of the plastic resistance is small,
or stated alternatively, the strain rate is a very strong function of the ap-
plied stress, with a phenomenological stress exponent m of the strain rate,

26




.0k LoGN/edY

Figure 13: Figure 11.13: A stress-strain curve for PdaSizo at 433 K for a strain
rate of 1.4 x 10~%s~1, with a sudden excursion to a strain rate of 3.4 x 107%s~1.

as defined in Eqn. (11.7) becoming ever larger as the temperature decreases.
This trend is shown in Fig. 11.15 for a PdgssSizo glass in the relatively high
temperature range near T, where the deformation is homogeneous and con-
ventional strain rate change experiments can be performed relatively easily.
The figure shows that as T — T, and the resistance to deformation becomes
progressively smaller in comparison with 7, the behavior apparently reverts
to a viscous type. The data shown in Fig. 11.15 is given also in columns
1-3 in Table 11.1, from which the usual shear activation volumes Av* can be
determined according to the well known relations

Table 11.1 Stress Exponents m, and Activation Volumes Av*, Measured in
Strain Rate Pdgy Sizo Change Experiments by Megusar et al (1979)

T,(K) [ of (GPa) [ m = dtné/dtng | Av'(m?)
413 1.29 11.74 " 8.08 x 10~ |
43 |13 8.64 | 7.90
453 1.02 7.21 i 7.65
473 0.94 6.15 t 7.40
493 | 0.6 7.18 9.81
513 0.65 5.42 10.20
533 0.64 4.51 8.98
553 0.57 5.23 l 12.10

Tensile flow stress at a strain rate of

é = 1.4 10755~}
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Figure 14: Figure 11.14: Dependence of the flow stress on temperature for PdggSiao
(0) Megusar, et al, 1979); and Pdy7 sCus Siye.5(0) (Pampillo and Chen, 1974). Solid
curve is the fit obtained with the model of Section 11.4.2.

9AG*, dlny
do Jr =kT( do

These are listed in column 4 of Table 11.1 and apart from some scatter,
appears to be constant at a level of about Av* = 9.13 x 10~%m3,

In the range in which the temperature dependence of the flow stress be-
comes very small, i.e., in the lower temperature region of Fig. 11.14, the
deformation is found to become quite inhomogeneous, with the deformation
being almost entirely confined into a set of intense shear bands, as shown
in Fig. 11.16. Here the tensile response of the samples becomes too un-
stable to perform strain rate change experiments. The specimens undergo
early fracture inside the intense shear bands by the “meniscus instability”
mechanism discussed in Section 11.3.3. In any case, however, the combina-
tion of negligible strain hardening and a decreasing strain rate sensitivity
of the flow stress should result in hastened rupture by necking even if such
fractures did not occur (Argon, 1973). In fact the mechanical instability is
hastened further since the strong shear localization suggests the presence of
a strain softening process. Much evidence (Megusar et al., 1982) indicates

Av* = —( )p = kTg. (11.13)
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Figure 15: Figure 11.15: Temperature dependence of stress exponent of strain rate
for a PdaoSizo glass (Megusar, et al 1979).

that this strain softening is due to the strain induced generation of free vol-
ume which does not decay during deformation at low temperatures and high
strain rates. The accumulating dilatation inside the sheared regions then
results in a drop in plastic resistance which, in turn, rapidly concentrates
the deformation further to form intense shear bands (Argon, 1979). Dilato-
metric measurements and associated kinematic analysis of shear localization
in a Pdy7s Cug Sijes glass has verified that there are indeed very substantial
density reductions inside shear bands which imply a flow dilatancy level of
B = d/d~ of 0.018 and a total local retained dilatation of about 0.5 inside
the bands for the total shear strains suffered by the bands of the order of
30 (Argon et al, 1985). Clearly, the level of inferred local dilatation can not
have been uniformly dispersed but must have produced substantial cavita-
tion. The reported tendency to form etch pits in shear bands (Pampillo and
Chen, 1974) is most likely to be related to these supra-atomic scale cavities.
Figure 11.17 shows that there is a well-defined combination of strain rate
and temperature which characterizes the bifurcation condition for formation
of shear bands (Megusar et al., 1979). In the higher temperature and lower
strain rate domain the strain induced free volume collapses diffusively as fast
as it forms so that the plastic resistance remains relatively unaltered, and
deformation remains homogeneous (Spaepen, 1977; Argon, 1979).

Operationally, the measurement of the plastic resistance of metallic glasses

29




Figure 16: Figure 11.16: Intense shear bands in a bent ribbon of a metallic glass
Fegg Nilg Pu Bg Siz (Argon, 1980).

in the lower temperature region is much more readily accomplished by means
of indentation hardness measurements which circumvent most of the difficul-
ties associated with mechanical instabilities in tension. Table 11.2 shows the
Vickers micro-hardnesses of a collection of prominent metallic glasses ob-
tained by Davis (1978). Applying the usual plastic constraint factor of 0.33
the tensile plastic resistances can be obtained from these measurements, and
are also given in Table 11.2.

30




Temperaiwe, *C
Tomperaiure, %

a £ ek ! ]
0" g3
Tensrig Sirain Mele, 1’

Figure 17: Figure 11.17: Regimes of homogeneous and inhomogeneous flow in a
Pdgg Sizo glass (Megusar, et al, 1979).

Table 11.2 Young’s Moduli £, Hardnesses A, and Plastic Resistances in
Tension Y of a Selection of Metallic Glasses (Davis, 1978)

Alloy E, (GPa) | H, (GPa) | Y = (H/3), (GPa)
Pdgg Sizg 89.7 4.9 1.63

Pdsr.s Cug Sites | 89.7 5.0 1.67

Nigo P20 116.0 6.1 2.03

Nigo Feqo P14 Be | 127.0 7.5 2.50

(Metglass 2826)

Fego P20 133 7.5 12,50

Feso Bzo 169 11.0 ' 3.67

Cnso ngo 85.1 5.8 I 1.93

Cugo Tiso 98.6 6.1 i 2.03

11.4.1.4 Structural Aging and its Effects on Plastic Resistance

Since glass transitions resulting from higher cooling rates result in higher
T,s and higher levels of frozen-in specific volume, structural compaction, or
relaxation, can continue in the glassy state, if the temperature is not too
low. Thus, the glass will undergo structural aging during which the density
will systematically increase (as the free volume decreases), and all measurable
mechanical properties will exhibit monotonic changes. Figures 11.9 and 11.12
show the resulting systematic decreases in internal friction and fluidity that
accompanies structural aging in metallic glasses. The changes in hardness
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Figure 18: Figure 11.18: Changes in micro-hardness and strain to fracture of an
Fego Byg glass as a function of aging time at 650 K (Deng and Argon, 1986a).

in a Feyg Byg glass are shown in Fig. 11.18. Associated TEM studies have
indicated that the rise in plastic resistance up to an aging time of 10* sec at
a temperature of 0.96 T, (0.92 of the crystallization temperature T.) occurs
as a result of structural aging in the glassy state alona without the benefit
of crystallization. When crystallization sets in at times exceeding 10* s:- a
further rise is recorded in the hardness which results from the relatively high
plastic resistances of the small crystallites that act as a first approximation
as rigid filler in the amorphous phase (Argon, 1986). We note from Fig.
11.18 that the aging also results in a sharp reduction in strain to fracture,
first in the amorphous range and then in the range where crystallization sets
in where the crystallites evidently act as sites for cavitation.

Deng and Argon (1986b) have studied the kinetics of structural aging
of metallic glasses and found evidence from a limited set of measurements
that the distributed properties of structural aging resembles closely the dis-
tributed nature of shear relaxations under stress. As we will discuss in Sec-
tion 11.4.3 below this, can be viewed either as a system with a distribution
of relaxation times, obeying conventional Arrhernius kinetics or a process
that obeys Williams-Watts kinetics characterized by so-called “stretched ex-
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ponential” decays. (Deng et al., 1989¢).

14.4.2 Model for Visco-Plastic Flow

Since access to the mechanism of visco-plastic flow in metallic glasses by
direct experimental methods on the atomic level has not been possible, the re-
sults of various types of simulation of the process have provided considerable
insight and guidance. One such fruitful simulation has been the amorphous
Bragg soap bubble raft explored by Argon and Kuo (1979) and Argon and Shi
(1982) which has indicated that based on this model the inelastic relaxations
in atomic glasses is most likely to be by shear transformations, producing
deformation in a manner sketched out in Fig. 11.8. In these experiments
of simulating the plastic deformation in the sheared amorphous bubble rafts
Argon and Kuo noted that the two dimensional forms of the sheared clus-
ters could vary from concentrated forms of translation across nearly planar
rows of bubbles to coupled diffuse rearrangements inside relatively equi-axed
clusters, as depicted in Fig. 11.19.

The kinetics of inelastic straining by the diffuse shear mechanism, which
is applicable in the low stress region of behavior could then be given readily
for the 3-D variant, by a strain rate expression of the following form (Argon,
1979; Argon and Shi, 1982),

. AF. . o4T0e
= onT _
4 = ¢ vg exp( kT)smh( T ) (11.14)
where
AF =~ ( -5 L Al+y) (). (11.15)

30(1=2) T 9(1-v)

is the Helmholtz free energy associated with a shear transformation occurring
in a spherical region of volume 0. having a transformation shear strain ~T
and a transformation dilatation ¥ at the saddle point (= $+7) (Eshelby,
1957). In Eqns. (11.14) and (11.15), o is the applied shear stress 4 and v
are the shear modulus and Poisson’s ratio respectively, while ¢ is the volume
fraction of the potentially transformable material and v¢ is the fundamental
frequency of the clusters. This form of the visco-plastic strain rate would
result in a phenomenological stress exponent of

) (11.16)
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Comparing-the predictions of the above model with the experimental mea-
surements of Megusur et al (1979) and making use of the Bragg soap bubble
raft simulations, the following values could be established: 8 = 1.0;4T =
0.135;Q1, = 7.8 x 10~ in?, for a Pdgy Siyo type metallic glass.

We note that when the applied stress decreases the non-linearity of be-
havior progressively decreases, the stress exponent m — 1 and Eqn. (11.14)
goes smoothly to an expression for Newtonian viscous flow and becomes

= ela™) () (- 220), (117

where AF, is now the activation energy of viscous flow and ¢ may incor-
porate a structure given by Eqn. (11.12). The smooth change from linear
to highly non-linear behavior as the stress is increased, and supporting the
above picture was experimentally established by Taub (1980).

The strain rate expression that results for the concentrated shear process
is given in turn (Argon, 1979) by

. AG* (o
4 = ey vg exp(— kIS )) (11.18)
where
AG* (o) = 4.56701(1 - %)’; 7 =1, (11.19a, 5)

with #;, being the ideal shear strength of the structure, estimated to be 0.03
4 by comparison with results from 3-D computer simulations of Maeda and
Takeuchi (1982).

The degree of agreement of the forms of the expressions given by Eqns.
(11.14) and (11.8) when stated as flow stress relations, and compared with
experimental results for Pdgg Sizo and Pdyszs Cug Sije.s is shown in Fig. 11.14
and for stress exponent, is shown in Fig. 11.15. The agreement in the lower
temperature region must be considered less good since deformation under-
goes extensive shear localization where the smaller temperature dependence
of the flow stress could be influenced strongly by the strain softening process
referred to in Section 11.4.1.3 above.

11.4.3 Simulations of Plastic Flow in Metallic Glasses

Simulation of plastic shearing in the computer has been considered by
many investigators as a fruitful avenue toward a better understanding of the
kinematics of the process at the atomic level in a glassy metal. Of those,
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Figure 19: Figure 11.19: Idealization of two limiting forms of shear transformations
observed in sheared soap bubble rafts: (a) concentrated shear translation, (b) diffuse
shear transformation (Argon and Kuo, 1979).

the 3-D simulations of Maeda and Takeuchi (1982) and that of Srolovitz et
al (1983) have pointed out the difficulties of required size of the simulation
cell and those associated with extracting kinematical information out of 3-
D space. To avoid these problems, of size and complexities in 3-D space,
albeit at the risk of missing some degrees of freedom, Deng et al. (1989a)
have chosen a relatively large 2-D simulation cell with periodic boundary
conditions that had previously been meited and quenched in the computer.
In this extensive simulation, as in nearly all others, individual atoms interact
with each other by means of a Lennard-Jones potential, smoothly truncated
between the third and fourth nearest neighbor atom. The details of the
interatomic potential, and its application to 2-D simulations are given by
Deng et al (1989a,d). Here we will discuss some of the more important
findings of those investigators.

Figure 11.20(a) shows the starting configuration of atom environments
after a perfect 2-D mat of hexagonal packing was melted and quenched in
the computer to a temperature of 4 x 1077 ,,(5.56 x 10~3T;) in a number of
steps each incorporating some structural relaxation, followed by holding fur-
ther at the final temperature. The resulting 2-D radial distribution function
of the final structure, is shown in Fig. 11.20b. Several features of the mat in
Fig. 11.20a must be noted. First, while the RDF shows the characteristics
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Figure 20: Figure 11.20 Arrangements of Voronoi polygons of atomic sites of a 2-D
model glass quenched to T'/T, = 4 x 1073. Note the 5-7 sided liquid-like material;
(b) RDF of atom positions in (a). (Deng et al, 1989a).

of a well-relaxed glass, it is far from being homogeneously disordered. There
is a substantial fraction of reasonably well-ordered material of hexagonal
symmetry with characteristic dimensions of 8-10 atomic spacings. Second,
the disordered material, readily recognizable by its chief ingredient of struc-
tural dipoles of atoms of 5 and 7 coordination makes up a volume fraction
of 0.16 of the total. At the melting point this fraction is as high as 0.40
and percolates through the structure. The 5/7 coordinated structural dipo-
lar material has an excess volume that is on the average 9% larger than a
pair of hexagonal atom sites and can be viewed as a structural element of
free-volume. Between T,, and T, the 5/7 dipolar material fraction decreases
monotonically to about 0.3, remaining, however, contiguous and maintaining
the percolation condition. Below T, the percolation condition is broken. In
anticipation of the important properties of the 3,7 sided material resulting
from its large free volume it has been identified as the liquid-like material of
Cohen and Grest (1979).

The plastic deformation simulation has consisted of imposition of succes-
sive increments of external shear strain of 3 x 107* applied to the borders
of the simulation mat, held at constant volume, followed by re-equilibration
of the atoms by means of some structure relaxation to remove the most
dis-equilibrium atom configurations. For each step of shear increment, after
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Figure 21: Figure 11.21: Shear response of 2-D model glass: (a) shear stress, shear
strain curve; (b) increase of evoked pressure due to dilatancy effect (Deng, et al,
1989d).

re-equilibration was achieved, the atomic site stress tensor was calculated
together with an atomic site strain increment tensor from the changes in the
displacement gradients of each atom with respect to its immediate neighbors.
Of particular interest were the two scalar invariants of the strain increment:
the dilatation increment and the maximum (Mohr circle) shear strain incre-
ment. The process of shearing was continued in this manner until a total
shear strain in excess of 0.27 was achieved for the simulation mat. Figure
11.21(a) shows the shear stress/shear strain curve for the mat.! A clear tran-
sition from nearly linear behavior to flow behavior occurs at a shear strain of
about 0.05. Figure 11.21(b) shows that while the mat is plastically sheared
at constant volume the external pressure on the mat increases slightly, but
monotonically until a strain of 0.15 is reached, after which it remains con-
stant. Figure 11.22 shows that when the shearing process is stopped at total
strain levels of 0.028, 0.075 and 0.125 and is reversed, there is a prominent
Bauschinger effect as reverse yielding is initiated even before complete un-
loading. The hysteresis is observed even in the apparent linear elastic range.

Examination of the distribution of deformations has resulted in the fol-

1 The stresses in Fig. 11.21 are given in units of Eo/r, where Eo is the binding energy
of the pair potential, and ro is the separation between atoms where the pair potential goes
to sero.
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Figure 22: Figure 11.22: Simulation of reversal of shear in 2-D model glass showing
pronounced Bauschinger effect (Deng, et al 1989d).

lowing findings:

a. Inelastic processes occur in the form of local shear transformations in-
corporating cooperative action of a number of neighboring atoms.

b. These transformations occur preferentially in regions where the liquid-
like material (free-volume) congregates as is shown in Fig. 11.23 giving
the distribution of local maximum shear strain increments at yield
for a further step of external shear: (observe the resemblance of this
distribution to the distribution of liquid-like material in Fig. 11.20(a)).

c. Inelastic processes, in the form of local shears in excess of the imposed
affine shear, begin in the initial linear range (there is no real elastic
limit).

d. The elastic-to-plastic transition occurs approximately when the total
accumulated shear transformations become contiguous as was antici-
pated by Argon and Shi (1983) and as is familiar in crystal plasticity
(Kocks, 1968).

e. At each stage of deformation, the residual back stresses of the shear
transformations of the immediately preceeding history help reverse the
deformation and are the cause of the large Bauschinger effect.
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f. The shear transformations are generally dilatant (as observed to be the
case by Argon and Shi (1982) in the soap bubble rafts) which results in
the build-up of a system pressure when the deformation is performed
at constant volume.

g. As a result of the deformation dilatancy the volume concentration of
liquid-like material can fluctuate, this is shown in Fig. 11.24 where the
variation of the liquid-like material concentration with strain is shown.
Comparison of this with Fig. 11.21(a) shows that the depression in
flow stress coincides with the peak in concentration of the liquid-like
material.

h. Eventually when the deformation induced liquid-like material becomes
contiguous, shear localization can set-in as is shown in Fig. 11.25
(a,b,c) as the total shear strain increases from 0.10-0.15-0.20. Promi-
nent localization has occurred at a shear strain of 0.15,

i. At any stage of the deformation imposition of an external affine shear
strain increment can evoke a substantial fraction of the local shears in
directions other than the external shear increment - apparently reliev-
ing disorder related pre-existent misfit, and always reducing the Gibbs
free energy of the entire system.

j. Finally, in all the observed sequences of deformation production of strain
from motion of unambiguous crystal dislocations (displacement of iso-
lated 5/7 dipoles) was quite rare resulting only in a fraction of about
0.11 of the total strain, but demonstrating the overwhelming efficiency
of this mode of strain production when it is present.

Clearly, the results of the simulation that were presented reclate to 2-D
material which must quantitatively differ from what occurs in 3-D material.
Nonetheless, the reported observations make up a complete set of phenomena
which provide important insight not only into the deformation mechanism
but also into the glassy state.

11.5 Inelastic Response in Space Network Glasses

Observation of anelastic and viscous behavior in space network glasses
(oxide glasses) at elevated temperatures, but still under their T, and at
relatively small stresses, has been widely reported. (Jones, 1948; Argon,
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Figure 23: Figure 11.23: Distribution of atomic site maximum shear strain spikes
in the sheared 2-D model glass (Deng et al 1989d).

1968). The distributed nature of relaxation times, in unmodified and mod-
ified network glasses measured by internal friction experiments or by creep
and recovery creep experiments is very similar to that discussed in Sections
11.4.1.1 and 11.4.1.2 for metallic glasses (Argon, 1968).

Plasticity in network glasses, however, is quite unfamiliar, since they frac-
ture under normal conditions in tension well before any non-linear behavior
characteristic of plastic flow can be initiated. When fracture is suppressed,
however, by the superposition of a large pressure or in micro-hardness ex-
periments where a large pressure exists in the plastic flow field as an integral
part, oxide glasses can undergo large strain plastic flow. The diverse, com-
mon and uncommon, experiments of many investigators carried out under
such favorable conditions have been reviewed by Argon (1980). Of these the
most informative are the micro-hardness indentation experiments of Marsh
(1964a,b) on a soda glass and type E glass at different temperatures and in-
dentation rates. These results are shown in Figs. 11.26(a) and (b), where the
athermal intercept value of the plastic shear resistance 7, is the ideal shear
strength which has been taken as u/2x on a sinusoidal model of shear inter-
action of two parallel planes in the solid. The solid curves in these figures
are the predictions of a variant of a homogeneous flow model similar to that
discussed in Section 11.4.2 for metallic glasses. It parallels the results well
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Figure 24: Figure 11.24: Variation with strain of the total number of liquid-like
atomic sites in the sheared 2-D model glass (Deng et al 1989d).

in the low stress and high temperature region but severely underpredicts the
plastic resistance at very low temperature or very high strain rate. This has
been accounted for by Argon (1980) as a manifestation of a strong strength
differential effect where the plastic resistance of a solid increases sharply with
increasing pressure when the accompanying background mean normal elastic
strains become very large. The dotted curves take such a strength differen-
tial into account based on the anticipated pressure dependence of the plastic
resistance.

It is worthwhile to emphasize that plasticity of oxide glasses even un-
der the most favorable conditions is very limited and of little technological
importance. Thus, oxide network glasses can be considered as intrinsically
brittle solids that will fracture before any significant plastic flow can oc-
cur under states of stress not containing a very high level of superimposed
pressure component.
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Figure 25: Figure 11.25: Sequence of development of shear localization in the
sheared 2-D model glass: (a) after v = 10%; (b) after v = 15% (c) after v = 20%
(Deng et al 1989d).

11.6 Inelastic Response in Polymeric Glasses
11.8.1 Experimental Observations

11.6.1.1 Anelasticity

The anelastic response of polymers has been studied extensively over a
wide frequency range between 0K and the T, (see McCrum et al, 1967).
In these studies it has been customary to report not only the temperature
dependence of the cyclic energy loss but also the so-called dynamic modulus
as a function of temperature at a given frequency. As in the case of metal-
lic glasses the spectral distribution of the mechanical relaxation times have
been viewed as a sensitive probe of the structure of the polymer. Figure
11.27 shows the temperature dependence of the dynamic modulus and the
associated internal friction (tané) spectrum of the atactic glassy polymer
of polycarbonate of bisphenol-A(PC) which is typical of most such informa-
tion for other polymers. Examination of Fig. 11.27, shows, however, that
there are some discrete relaxations below the glass transition temperature
which must have a specific molecular level interpretation. In PC, where the
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Figure 26: Figure 11.28: Temperature dependence (a) and strain rate dependence
(b) of normalized flow stress of two network glasses: () E glass; (O) soda glass
(Marsh, 1964a,b; Argon, 1980).

molecule contains a regular arrangement of phenylene rings, their rotation
about the molecule axis can be a major component of a lucal shear relax-
ation. Similarly, other conformational rearrangements of specific molecular
segments can also be responsible for these discrete relaxations superimposed
on more diffuse rearrangements of the entire molecule. Such rearrangements
have been discussed by McCrum et al (1967) and have also been partially
simulated in the computer as we will discuss in Section 11.6.3.

11.6.1.2 Plastic Flow and its Mechanism

All glassy polymers exhibit plastic behavior under high stresses in comn-
pression where fracture can be suppressed in those that tend to be brittle in
tension. In the subgroup of stiff chain thermoplastic glassy polymers which
do not craze, or in which crazing can be suppressed, well developed plastic-
ity is observed also in tension. A character feature of this plastic behavior,
differentiating it from ductile metals, is the strong molecular orientation
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Figure 27: Figure 11.27: Temperature dependence of the shear modulus and cyclic
energy loss in PC. (Kambour, private communication).

hardening that occurs at large strain which results in a sharp up-turn in the
tensile plastic resistance curve, as is shown in the set of stress strain curves
of PMMA in Fig. 11.28 (Hope, et al, 1980). The form of these curves is
reminiscent of the large strain behavior of cross linked rubbers, albeit with
a substantial additive component of strain-independent plastic resistance.
That this resemblance is real is established from the nearly complete recov-
erability of shape of highly distorted glassy polymers when they are heated
to above their T.

The temperature dependence of the yield strength of glassy polymers
closely parallels the temperature dependence of the modulus as is shown
in Figs. 11.29(a) and 11.29(b) for a set of stiff chain polyimides (Argon
and Bessonov, 1977a). This indicates that the plastic resistance is governed
primarily by intermolecular interactions. The dependence of the inelastic
strain rate on the applied stress is a strongly non-linear one, also reminiscent
of metal plasticity, as the results for polyethylene-terephthalate (PET) in Fig.
11.30 show. Argon and Bessonov (1977a) have carried out experiments on
the strain rate dependence of the tensile or compressive yield strength of a
series of glassy polymers ranging from flexible chain polymers to some stiff
chain polymers to probe the shear activation volumes Av* of the plastic flow
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Figure 28: Figure 11.28: Tensile true stress, true strain curves for PMMA at 90C
(Hope et al 1980; Boyce et al 1988a).

event. Their results are given in Table 11.3.

Table 11.3 Shear Activation Volumes Av*, and Actual Volumes . of
Relaxing Clusters of Glassy Polymers

| Polymer | Av®, (m3) | Q,(m%)?
PS 284 % 10-9 | 0.78 x 10-2°
PMMA | 378 1.01
PET 991 2.68
PC 1060 2.86
PPO 613 1.66
R-R 1030 2.78
DFO 1710 4.62
Kapton | 2280 6.16
T From experiments of Argon and Bessonov (1977a).
} Calculated using 4T = 0.037 based on simulation
of Mott et al (1991).

Calorimetric experiments of Oleynik (1990) and co-workers (Rudnev, et
al, 1990) have revealed important and striking parallels of the plasticity of
glassy polymers to that of glassy metals discussed in Sections 11.4.1-11.4.3.
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Figure 29: Figure 11.29: Temperature dependence of tensile yield stress (a); and
Young’s modulus (b); of a set of polyimides; (R-R) resorcinol; (H-H) hydroquinone;
(DFO) oxydiphenyl (Kapton) pyro-melitic acid (Argon and Bessonov, 1977a).

Their coordinated measurements of stress strain behavior, concurrent defor-
mation calorimetry (DC) and subsequent differential scanning calorimetry
(DSC) have established that heat evolution begins below yield and mono-
tonically and smoothly increases with increasing strain to a relatively high
rate Q, paralleling the overall plastic work rate W at a strain of about 25%,
as is shown for the case of atactic polystyrene (a-PS) in Fig. 11.31. At that
stage the stored energy of cold work, A F, reaches a steady state (presumably
dependent, to some extent on the applied strain rate), while there are still no
important changes in infra-red (IR) spectroscopy indicating that significant,
large scale changes in molecular conformations have not occurred. The DSC
measurements have shown that on samples deformed to plastic strain (com-
pression) levels of 10-30%, cooled under stress to low temperatures, followed
by stress removal, and upon heating, stored energy release begins at the pre-
vious deformation temperature, and has a characteristic bi-modal spectrum
shown in Fig. 11.32 for an epoxy-aromatic amine network (EAN) polymer.
The sharp high temperature peak occurring at T, (= 140 C) is related to con-
formational recovery, while the broad low temperature hump, starting from
the previous deformation temperature is of a different, non-conformational,
character, and is more akin to the stored elastic strain energies around shear
transformations discussed in Section 11.4.2 for metallic glasses. Moreover,
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Figure 30: Figure 11.30: Stress dependence of the inelastic strain rate in PET at
330K. At the mechanical threshold stress the strain rate becomes unbounded (Argon
and Bessonov, 1977b).

these investigators have established that in lightly strained samples only the
low energy hump is present, and that the appearance of the conformational
peak requires strains in excess of those where AF reaches its initial plateau
value. This indicates that the development of the molecular orientation,
characteristic of large strain behavior akin to cross linked rubbers, requires
the establishment of a steady plastic flow state. The validity of the above
sequence of processes is verified by the results of computer simulations of
plastic flow in vinyl polymers that we will discuss in Section 11.6.3.

11.6.1.3 Kinetics of Plastic Flow

While the actual kinematics of molecular segment rearrangements dur-
ing the plastic deformation of glassy polymers remains elusive, mechanism
inspired and quite successful constitutive laws can be stated for deformation
in the glassy state. One such formalism is that of Argon (1973). In this
approach a specific form of strain producing molecular segment rotation is
conceived and the saddle point free energy AG" for it is calculated in terms
of some molecular scale parameters. The resulting Arrhenius rate expression
for plastic shear strain rate is

AG!
4 = Yo exp(——= T ) (11.20)
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Figure 31: Figure 11.31: Rate of mechanical work expenditure, (A); free energy

storage (AF); and evolution of heat (Q) during the plastic deformation of atactic
PS (Oleynik, 1990).

with
g,.3
AG = AGo(1-(3)?) (11.21a)
_ 3muwle® .
AGy = 16(1 =) L7 =007 (11.21,¢)

Argon and Bessonov (1977a) have noted that this constitutive form can be
stated as

(%)% = A - B(T/u). (11.22)
where

0.077

A=(gopt - B A%;f}&tn(ﬁc/ﬁ) (11.23a,b)

are material constants. That this is indeed the correct form of the consti-
tutive behavior for the thermoplastic glassy polymers listed in Table 11.3 is
shown in Figs. 11.33(a) and 11.33(b) and for a DGEBA (di-glycidy! ether of
bisphenol-A) epoxy thermoset polymer in Fig. 11.33(c) (Yamini and Young,
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Figure 32: Figure 11.32: Strain recovery spectrum with temperature of previously
deformed EAN-polymers: (1) T = 150C, ¢ = 0.04; (2) T = 60C, e = 0.11; (3) T =
20C, € = 0.09; (4) T = -85 C, e = 0.12; T = ~ 85C, ¢ = 0.045 (Oleynik, 1990).

1980). More extensive discussions about the possible molecular level mean-
ings of the above form of the constitutive relation were provided in the orig-
inal reference.

When large strains are suffered by the glassy polymer, strain induced
molecular orientation produces an important back stress to deformation that
can be modeled as a first approximation by the entropic resistance of rubber
eiasticity (Haward and Thackray, 1968; Argon, 1973; Boyce et al, 1988a)
which gives the following principal back stress (resistances);

RT 13
B; = pm—&'{xiﬂ-l(/\.'/z\”) -3 Z /\,'ﬂ_l(k,'/z\,.)} (11.24)

where pRT /M, is the rubbery regime shear modulus, A; are the principal ex-
tension ratios, A\, the uniaxial locking stretch of the polymer where full molec-
ular orientation occurs, and £! is the inverse Langevin function (Boyce et
al, 1988a). Figure 11,28 shows the agreement between experimental results
and the theoretical formalisms represented by Eqns. (11.20-11.24). This
constitutive relation for the plastic resistance incorporating other improve-
ments related to strain softening, aging, and pressure dependence of the
plastic resistance has been used extensively by Boyce et al (1988a,b; 1989)
in computational applications of boundary value problems for large strain
deformation processing.

The above theoretical model is meant to apply for deformation in a stable
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Figure 33: Figure 11.33: Dependence of normalized plastic shear resistance on
temperature for a series of glassy polymers. The straight lines fit the form of the
model of Section 11.6.1.3 (a) Flexible chain polymers; (b) stiff chain polymers (Argon
and Bessonov, 1977a); (¢) DGEBA - epoxy polymer (Yamini and Young, 1980).

structure where an increase in temperature only accelerates the kinetics of
transfer of deformation units from unflexed to flexed. Near a glass transi-
tion where a temperature increase produces important structural alterations
that increase the fraction of liquid-like material (see Section 11.4.3), different
considerations are necessary to change the emphasis from inter-molecular to
intra-molecular resistances to deformation. This was achieved by Robertson
(1966, 1968) in a theoretical model in which thermal equilibrium concen-
trations of strain producing “flexed” molecular conformation under the ap-
plied shear stress are calculated from Boltzmann statistics through which a
structural reference temperature 4 (above T,) is defined that in turn defines
the effective deformation resistance through the free volume model of the
glass transition of Williams, Landel and Ferry (1955). Argon and Bessonov
(1977a) have compared *he Robertson model to theirs and have concluded
that it should be the model of choice ne~r T,.

11.6.2 Dilatational Plasticity in Glassy Polymers

As discussed in Section 11.3.2.2 certain glassy polymers undergo crazing
in tension leading to a mode of dilatational plasticity. While the molecular
level requirements for a crazing vs non-crazing response are not well estab-
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lished, two complementary conditions are known to be important. First,
polymers that undergo crazing are predominantly flexible chain material
which are known to have unusually high atomic level stresses due to a high de-
gree of molecular structural disorder. (Theodorou and Suter 1986a,b), while
non-crazable polymers tend to be stiff chain material with considerable ev-
idence for short range order — and poesibly having much lower atomic level
disorder stresses (Argon and Cohen, 1990). Second, non crazable polymers
include those that have very high levels of entanglement densities, result-
ing in very small natural draw ratios, not permitting the formation of craze
matter fibrils (Kramer, 1983).
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Figure 34: Figure 11.34: Dependence of craze initiation time on different levels
of negative pressure and deviatoric shear stress at room temperature in atactic PS
(Argon and Hannoosh, 1977).

Initiation of crazes is a rate process that is sensitive to a certain combina-
tion of the deviatoric shear component s, and the negative pressure oy, of the
local applied stress. Figure 11.34 shows a set of experimental observations of
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Argon and Hannosh (1977) on crase initiation time t;, from the surfaces of
polystyrene (PS) samples with a known level of controlled micro-roughness,
subjected to different combinations of s and o,,. This combination can be
stated as a craze initiation rate as follows:

Rate = t‘-Clexp(—-ZQY ) (11.25)

The constants C;,C;, Q (C; = 166 x 107 sec™};C; = 0.95GPa;Q = 0.0133
at 205 K (Piorkowska, et al, 1990)) are material parameters with the above
experimentally determined values being appropriate for PS at room temper-
ature; and where Y is the tensile plastic resistance. A mechanistic rationale
for the above form has been given by Argon and Hannosh (1977).

Crazes viewed as dilatational transformations, as discussed in Section
11.3.2.2, grow by the continued ccnversion of solid polymer into spongy or
fibrillar craze matter by displacing the craze borders under a tensile stress
acting across the craze plane. This conversion has been established to be by
an interface convolution process (Argon and Salama, 1977; Kramer, 1983)
that results in the following overall craze strain rate,

€ = e"%(Ah) (11.26)

where A is the total craze area per unit volume, and h is the primordial
craze thickness undergoing the tensile transformation strain €7. In the early
stages of crazing the craze thickness tends to remain fixed, and

é = € hpuy (11.26a)

where p is the active craze front length per unit volume and v, is the craze
tip velocity, transverse to the applied tensile stress. In the latter stages of
crazing when the total craze area per unit volume remains relatively fixed
and the craze widens by translating the craze borders, the craze strain rate
becomes ’

o 2y 11.26b

€ — I—;—;; Ve ( . )
where v,; is the craze border velocity, in the direction of the applied tensile
stress o and the factor 2 arises from the fact that the craze can thicken by
the outward displacement of both of its borders. The craze front velocity
and the craze border velocities have a kinetical dependence on the applied

stress o given by (Argon and Salama, 1977; Piorkowska, et al, 1990)
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Y AG,
Ve = QU = aUp— exp{—

7 1= (0 a) ‘J}. (11.27)

In Eqn (11.27) Y (= 0.1334/(1 — v)) is the athermal plastic resistance of
the glassy polymer, A!, is an orientation hardening-modified extension ratio
of the craze matter v, is a pre-exponential rate constant, a a geometrical
constant and AGy is an elfective activation free enargy of plastic flow (Eqn.
11.2b). For PS at room temperature (@ = 0.282;vp = 1.23 x 10° m/sec;
AGo/kT = 44.7; X, = 1.85; (Piorkowska, et al, 1990)).

For additional details of craze plasticity, the effect of polymer type, molec-
ular weight, and related matter, the reader is referred to the two treatises
edited by Kausch (1983, 1990). Finally, it should be noted that while crazes
do transform the continuous polymer to a discontinuous spongy form it can
nevertheless, result in very substantial overall strains - provided that the
crazing process is carefully “managed” to occur at stress levels that do not
result in craze fracture (Volynskii and Bakeev, 1984),

11.6.3 Simulation of Plastic Flow in Glassy Polymers
11.6.3.1 Molecular Structure Models

As in the case of atomic glasses discussed in Section 11.4.3, in polymeric
glasses the molecular level process of plastic deformation can be very effec-
tively simulated by computer.

Considering the interactions between atoms along the back-bone of a
chain molecule of a polymer glass, it is found that relative separation of
atoms as wel! as flexing of bound angles between atoms along the molecule
are very strongly resisted. In comparison, the rotation of molecular groups
about a bond needs to overcome only a modest torsional restoring moment
which tends to make chain molecules conform primarily by rotation along
the back-bone bonds. Thus, as a first approximation the back-bone bonds
act as inextensional and bond angles as inflexible. In addition, in a dense
arrangement of chain molecules, portions of the molecule will interact with
portions of surrounding molecules by van der Waals interaction. Based on
these idealizations, utilizing known forms of torsional potentials and van der
Waals interactions molecular structures of several glassy polymers have been
obtained by static energy minimization techniques. These include polypropy-
lene (PP) (Theodorou and Suter, (1985, 1986a,b) polyvinyl chloride (PVC)
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Figure 35: Figure 11.35: The molecular structure of a typical configuration of
glassy PC of bisphenol-A (Hutnik, et al 1991a)

(Ludovice and Suter, 1991), polycarbonate of bisphenol-A (PC) (Hutnik et
al, 1991a). Figure 11.35 shows a typical fully dense configuration of glassy PC
in the form of a single molecule of molecular weight of 4.53 kg/mole together
with its many images reflected back into, and filling a cube with reriodic
boundary conditions. The atomic radii in this figure have been reduced in
size to permit viewing into the :ructure. The details of how these molecular
structures are obtained from the best information on interatomic force fields
are too extensive to be presented here. The interested reader must consult
the above references for this detail. It should suffice here to state that these
structures that have been obtained for the appropriate densities, have x-ray
scattering factors, cohesive energy densities, and elastic properties that agree
very well with corresponding experimental results. They all have rather high
atomic level stresses that have root mean square values of the same order as
the elastic moduli themselves, and are thus about a factor of 3 higher than
the corresponding stres-es in atomic glasses on a normalized basis. Below
we will discuss simulations of molecular segment relaxations in PC that play
a role in internal friction and large strain pure shear deformation in PP.
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Figure 36: Figure 11.36: Energetic characteristics of phenyl ring rotations in PC:
(a) cumulative distribution and frequency distribution of curvatures of energy wells
of rings; (b) distribution of peak energy barriers to ring rotations (Hutnik et al
1991b).

11.6.3.2 Segment Relaxations in PC:

The so-called 8 relaxation, loss peak shown in Fig. 11.27 in PC has
commonly been attributed to a local shear relaxation process involving, at
least in part, the rotation of a phenyl ring, or alternatively involving a con-
formational rearrangement in another specific atomic group along the chain
backbone such as perhaps the carbonate group. These possibilities were in-
vestigated by Hutnik et al (1991b) in molecular structure models such as the
one shown in Fig. 11.35, by imposing increments of rotation to a selection of
phenyl rings, fixing the rotation angle in one or the other bonds on either side
of the ring, followed by energy re-minimization of the entire structure. This
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has resulted in either the actual rotation of the ring or, in some cases, in the
conformational rearrangement in the adjoining carbonate group. For either
case the derived potential contour along the reaction path for the imposed
change exhibited clear energy maxima, bounding ranges of stable flexing of
the local system. Figures 11.36(a) and 11.36(b) show the cumulative distri-
bution and frequency distributions of the curvature a of the local energy well
and the peak energy barriers AE respectively for the phenyl ring rotations.
Considering the ring in its potential well as a rotational simple harmonic
oscillator, its frequency factor v can be obtained as
_ _}_ 2a

ST oV I
giving an overall rotational transition rate R (reciprocal average waiting time
for ring rotation)

(11.28)

AE
R=vg exp(—-ﬁt— (11.29)

where J is the effective rotational mass moment of inertia of the phenyl
ring. Using appropriate values for the latter and the average value of @ = 23
keal/mole rad?, vg = 2.3 x 10'? Hz was found. The average value AE =
10.4+ 6.7 kcal/mole for the energy barrier for ring rotation obtained from
the simulation compares very well with the range of experimental values
from 9.1 to 12.0 kcal/mole measured in NMR experiments. The distribution
of energies given in Fig. 11.36(b) is extremely broad ranging up to nearly
30 kcal/mole in comparison. The intra-molecular energy barrier for a ring
rotation in an isolated molecule in solution is, in comparison, only in the
neighborhood of 3 kcal/mole. Thus, clearly the energy barrier to ring ro-
tation is primarily of an intermolecular nature. That this is so has been
verified by noting that the segmental displacements in the surroundings of a
rotating ring are always far reaching.

A complementary simulation of the conformational rearrangements of the
carbonate group have given an equally broad distribution of energies with
an average of AE = 10.1% 6.5 kcal/mole.

These barrier energies for ring rotation and carbonate group rearrange-
ments are considerably higher than the experimental value of about 7 kcal/mole.
Clearly, when stimulated by external conditions of imposed cyclic strains the
material will respond by selecting the lower energy portion of available pro-
cesses. There is initial evidence from additonal simulations of large strain
plastic behavior that local shear relaxations in PC have indeed important
components of recognizable ring rotations. Considering that the simulations
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Figure 37: Figure 11.37: Simulation of stress-strain relation in the plastic deforma-
tion of atactic PP at 253K: (a) stress-strain curve for an average of 9 configurations;
the lower curve shows the increase of system pressure under constant volume due
to the dilatant nature of the deformation; (b) stress-strain curve for a single config-
uration (Mott et al, 1991).

with their imposed rotations, must be an upper bound, the agreement be-
tween them and anelastic damping experiments is encouraging.

11.6.3.3 Large Strain Plastic Shear of PP

A molecular structure model of glassy PP of a molecular weight of 2.968
kg/ mole (= 76 monomer units) similar to that shown in Fig. 11.35 for PC,
and having a density and thermal properties appropriate for a temperature
of 233K (= T, ~20) was subjected to increments of extension of 2x 10~* along
one edge of the cube and ~2 x 10~ along one of the transverse directions,
to achieve conditions of pure shear at constant volume (Mott et al, 1991).
In the fully equilibrated structure, after each increment of deformation, the
atomic site stress tensors and strain increment tensors were calculated for
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Figure 38: Figure 11.38: The chronology of the development of plastic strain
increments for each backbone carbon atom on the PP molecule for the stress strain
response of Fig. 11.37(b). The extensive “plastic” activity along the entire length

of the molecule coincides with the sharp stress drops a-g shown in the figure (Mott,
et al, 1991).

each atom. Figure 11.37(a) shows the resulting deviatoric tensile stress-
strain curve obtained from the volume average stress and strain increments
for a configuration average of 9 such simulation experiments. Figure 11.37(b)
shows the tensile deviatoric stress-strain curve of just one of these configu-
rations. The latter curve which samples the behavior of only a very small
volume element has a high initial atomic level “stress noise” which is much
reduced in Fig. 11.37(a) in the configuration average of 9 such responses.
The configuration average behavior of Fig. 11.37(a) shows clear yielding be-
havior at a strain of about 5%, a broad transition to fully developed flow
at about 10% and no important hardening after this. It also shows that
the system pressure increases monotonically, up to about 10%, strain due to
the fact that the deformation of the glassy material is of a dilatant nature
and was enforced at constant volume. While more “noisy”, the response of
the single configuration shown in Fig. 11.37(b) shows important detail. It
shows no clear elastic to plastic transition in the early stages but rather a
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protracted reversible anelastic behavior to about 10%. After this range of
straining, which has apparently mechanically polarized all pockets of more
compliant material, the behavior becomes a succession of reversible elastic
loading steps, with the expected slope, followed by abrupt and discrete steps
of large irreversible plastic relaxations occurring at constant overall strain.
Figure 11.38 shows a “spike map” of deviatoric atomic strain increments for
each of the 153 back-bone carbon atom sites for each of the 100 strain in-
crement steps. Clearly, outside the seven large plastic drops where intense
strain activity is registered at nearly all atom sites, the strain increments
during the other intervening 93 imposed strain steps are very small and at
a background level. Intensive examination of molecular segment motions in
the large plastic drops, by several techniques, including incremental stereo-
imaging, revealed no readily recognizable recurring segmental motions, but
established that the relaxations are far reaching, over the entire simulation
cell having a volume of 60 x10~3" m®. Simulations carried out on a volume
of 4.7 -107% m? gave similar but far less noisy results, suggesting that the
inextensional bonds and inflexible bond angles of the molecules can accom-
modate the transformation shear strains of the plastic events by complex
cooperative rotations about bonds only over substantially large volume ele-
ments. To verify this, first the distribution of transformation shear strains
~T was computed from the plastic stress drops and is shown in Fig. 11.39.
The average value of this broad distribution is 47 = 0.037 + 0.035. Then,
the calculated transformation shear strain distribution of the plastic stress
drops of the simulation was compared with the experimentally determined
activation volumes of Tables 11.3. Recognizing that the measured activation
volumes are products of the transformation shear strain 47 and the actual
volumes {1, of the regions undergoing the relaxation, estimates of these vol-
umes were obtained for all the polymers in Table 11.3 on the assumption
that the average values of 47 are of similar magnitudes as those given in Fig.
11.39 for PP. These computed volumes {], are given in the last column of Ta-
ble 11.3, and indicate that the plastic relaxations indeed require cooperative
segmental rearrangements over a large volume.

The pure shear simulation has also searched for the rate of development
of orientational alignment of segments over the range of straining of up to
20% axial extension. No significant development of molecular orientation
above the background “noise” level was found. From all of these it must be
concluded that the early regions of plastic deformation in glassy polymers
bear a remarkable similarity to deformation in atomic glasses. Both undergo
deformation by localized, elastic strain-energy-storing shear transformations
which, however, are less localized in glassy polymers because of the con-
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Figure 39: Figure 11.39: Distribution of “transformation” shear strains calcu-
lated from the discrete stress drops in the 9 separate configurations entering into
the stress-strain response of Fig. 11.37(a). The figure shows both the cumulative
distribution and the frequency distribution (Mott, et al, 1991).

straints imposed by the chain molecule. Recognizable free energy storage by
reduction in configurational entropy that must eventually occur to account
for the complete recoverability of shape change above T, apparently does
not set-in until the later stages of deformation, all in very good agreement
with the deformation calorimetric measurements and post deformation DSC
measurements of Oleynik (1990).

In a partial simulation of molecular motions in a glassy polymer under-
going tensile extension, Yannas and Luise (1983) have obtained estimates
of the deformation resistance using interatomic pair potentials, based or an
assumed uncoiling motion of molecules which they have labelled “Strophon”
motion. The above simulations indicate that this view has considerable
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11.7 Fracture of Glasses

11.7.1 The Fracture Instability

The role of cracks and flaws in brittle fracture under monotonic loading
has been well appreciated since the pioneering work of Griffith (1920, 1924).
The modifications that are necessary to Griffith’s theory to understand frac-
ture in more or less plastically deformable solids have been subjects of intense
interest to ever-widening groups of researchers. The basic directions to these
developments were given early by Orowan (1949) and by Irwin (1948), who in
particular founded the branch of study of fracture mechanics that concerns
itself with the precise statement of the condition of the fracture instability
in structural components. Discussion of this very extensive subject will be
outside the scope of this chapter. We shall find it sufficient to note that, for
relatively low levels, of inelastic deformation that is necessary to propagate
a crack in a solid, the condition of the fracture instability can be stated al-
ternatively: as a critical stress intensity factor K; a critical crack opening
displacement 6., defined at the root of the crack; or a critical energy release
rate G;. These terms, defined for tension in relation to the macroscopic pa-
rameters under the control of the experimenter, are given for a plane strain
setting as follows:

K = o(ra)*F(a/w), (11.30)
6., =aK}/YE. (11.31)
Gr = -98U/da ={(1 - v)*/E|K}. (11.32)

In Eqgs. (11.30 - 11.32), ¢ is the applied tensile stress, a the half crack length,
F(a/w) a function of the specimen width w(F — 1 for a/w — 0), Y the
yield strength in tension in a non-strain-hardening idealization, £ Young’s
modulus, v Poisson’s ratio, a a constant of order unity, and U the potential
energy of the system of sample and its tractions. The functions F(a/w) have
been calculated for a large number of shapes in which the crack length is of
finite proportions with respect to the width w and are readily available in
the literature (Paris and Sih, 1965; Tada et al (1973); Rooke and Cartwright,
(1976)). In glasses below T,, where the inelastic deformations at the time of
fracture are confined to the surroundings of the tip of the crack (small-scale
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yielding), the three alternative forcing functions given above are of equal
utility. At temperatures very near T,, where the glasses can become more
compliant and tough so that the inelastic deformation zone spreads out over
a large portion of the sample before the crack begins to propagate, different
forcing functions based on nonlinear constitutive behavior become necessary.
Since this falls outside our range of interest, however, we shall not expand
on this topic further. The interested reader will find an elegant treatment of
this subject in Hutchinson (1979).

The subject of interest to us will be the mechanisms that govern the
critical levels of these “forcing functions” for fracture in the different glasses.

The process of fracture needs a crack that can be propagated across the
specimen against the resistance of the material when the appropriate forcing
function becomes large enough. It is an easy exercise to show (Argon, 1977)
that the cracks that are necessary to bridge the gap between the technological
strength levels and the cohesive strength cannot form by thermal motion
under stress but must result from other processes that differ in complexity
and importance between metallic glasses, oxide glasses and glassy polymers.
Particularly in thermoplastic glassy polymers the process of crack formation
requires crazing, which can in many instances provide significant dilatational
strains before turning into unstable cracks. The various processes that lead
to the formation of supercritical cracks in glasses to produce fracture under
stress have been discussed by Argon (1980).

11.7.2 Fracture in Space Network Glasses

Griffith (1920) in his classical work on fracture was first to demonstrate
that cracks propagate in oxide glasses when the rate of release of elastic
energy equals the rate of production of the energy of fresh surfaces or, as
Orowan (1934) pointed out somewhat later, when the concentrated stress at
the tip of the often atomically sharp crack reaches the ideal cohesive strength
0:. of the glass. Since oxide glasses are potentially brittle solids according to
the basic classification of Kelly et al. (1967), and Rice and Thomson (1974),
this propagation is not accompanied by any significant amount of plastic
deformation. Hence, the critical stress intensity factor K;. becomes

Kr = (2Ex)Y? = 0,.(b7)'/3, (11.33)

where E is Young’s modulus, x the surface energy, and b the inter-atomic
distance. In most inorganic glasses, the surface energy is of order 0.5-1.5
J/m? (Griffith, 1920) and Young’s modulus of order 70 GPa. This makes
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the critical stress intensity factor K, of order 0.3-1.0 MPa m!/3, which is
very close to the value of 0.28 MPa m!/? measured by Griffith (1920) on
pre-cracked tubes and spherical bulbs of a conventional soda glass of 0.692
S10; 0.12 K,0; 0.009 Na;0;0.118Al,04; 0.045Ca0; and 0.009 MnO. Most
experiments since the time of Griffith have confirmed this picture.

Figure 40: Figure 11.40: Instability in an advancing fluid meniscus between two
glass plates producing characteristic surface convolutions: (a)-(c) are stages in the
development of the instability (Taylor, 1950).

11.7.3 Fracture in Metallic Glasses

As we have already shown in Fig. 11.17, fracture occurs in metallic
glasses by an intrinsic cavitation process involving the meniscus instability.
Deep surface offsets at shear bands act as the initiating sites from which
cracks propagate inward, usually, but not necessarily always, along the shear
bands where the deformation-induced excess free volume has lowered the
plastic resistance. In this fracture process, the basic mechanism of separation
is ductile rupture along the steady-state ridges between the finger-shaped
protrusions at the convoluted crack tip penetrating almost monolithically
into the region ahead of the crack tip — in a manner shown in Fig. 11.40, for
the classical case of separation in a simple fluid. The development of Argon
and Salama (1976) for the convoluted meniscus interface of a nonlinear fluid
permits the determination of the fracture toughness K. as
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Kr. = (22 ﬁf ()xE )y, (11.34)
where a 2 2.7 is a numerical constant giving the ratio of the critical crack
opening displacement to the product of the tensile yield strain and the criti-
cal plastic zone size. In metallic glasses at low temperatures where the strain
rate sensitivity of the flow stress is nil, B(n) ~ 1.2. In addition most metallic
glasses have Young's moduli of order 140 GPa, tensile yield stresses of order
2.5 GPa, and surface energies of order 2J/m?, which gives for the fracture
toughness K. about 10 MPa m!/? (Davis (1976) has performed a number
of plane strain fracture toughness experiments on samples of metallic glass
precracked by fatigue crack propagation. He has found these fracture tough-
nesses to range from a low of 9.5 MPa m!/? for a glass of NisFe;oP;BeSis
to a high of 12.65 MPa m!/? for the strongest glass of FegyBsg. These val-
ues are in remarkably good agreement with the prediction of the meniscus
convolution model of crack propagation.

11.7.4 Fracture in Thermoplastic Glassy Polymers

In thermoplastic glassy polymers, when crazes are transformed into su-
percritical cracks, or when other inclusions or large-scale surface irregulari-
ties act as supercritical cracks, catastrophic fracture follows. In their growth,
such cracks will be blunted by inelastic deformation at the crack tip that can
be a mixture of plastic flow and additional crazing occurring in a zone having
the dimensions R, given by the small-scale yielding theory as

R, =a(o/Y)?, (11.35)

where the symbols have their previously defined meaning. Crack propagation
occurs when craze matter fracture begins, starting from particulate inclusions
entrapped in the craze, as shown in Fig. 11.7 or when a series of ruptures in
adjoining crazes are bridged by some plastic flow and tearing. The details
of the breakdown of craze matter under stress from extrinsic or intrinsic
imperfections have been discussed by Kramer (1983), and Argon and Cohen
(1990). Thus in most cases, the fracture instability occurs when the K stress
intensity reaches a critical value K.

Williams (1977) has examined the plane strain fracture condition of a
number of glassy polymers and has found them to be governed by a critical
stress intensity factor criterion. The case for PS in Fig. 11.42 is typical.
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Figure 41: Figure 11.41: The development of fracture by the propagation of the
convoluted meniscus at the tip of a crack: (a) sketch showing the location of the frac-
ture along a concentrated shear band; (b) fracture surface showing the characteristic
rupture ridges (Megusar, et al, 1979).

Evaluation of the slopes of the lines such as that in Fig. 11.42 at differ-
ent tem-eratures has given that the critical stress intensity factor of PS is
reiztively temperature independent.

For a more extensive discussion of the fracture mechanics of polymers the
reader is referred to Williams (1984).
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